Unit 1 - Total Review

Physics 3204

i)

- 1. An object is fired with an initial velocity of 23 m/s [R30°U]. What are the initial components of its velocity?
- 2. An object rolls off the top of a horizontal table.
 - a) Sketch the trajectory of this object and label the velocity vectors at three points.
 - b) Sketch the trajectory of this object and label the acceleration vector at three points.
- 3. An object is fired at an angle of 60° below the horizon. Sketch the acceleration vector for this projectile at three points in its trajectory.
- 4. A plane in horizontal flight at a velocity of 560 km/hr releases a projectile. From what altitude can the package be released in order to hit a target 1500 m ahead of the aircraft?
- 5. For each of the projectiles shown below, calculate:
 - a) time in the air
 - b) max range
 - c) velocity when it hits the ground (magnitude and direction)
 - d) max altitude for iii)

1	$v_y = 11.5 \text{ m/s [up]}$ $v_x = 19.9 \text{ m/s [right]}$	
2a	notes	
2b	notes	
3	all arrows same length	
4	$d_y = 455 m$	
5i	t = 1.75 s, $d_x = 19.2$ m v _f = 20.4 m/s [R57°D]	
5ii	t = 1.89s, $d_x = 12.0 \text{ m}$ v _f = 22.4 m/s [R74°D]	
5iii	t = 9.27 s, d_x = 168 m v_f = 73 m/s [R76 ^o D] $d_{Y max}$ = 20.6 m	

- 1. Calculate the normal force in each of the situations below.
 - a) A 25.0 kg block in a stationary elevator.
 - b) A 25.0 kg block in an elevator accelerating up at 1.2 m/s/s.
 - c) A 25.0 kg block in an elevator accelerating down at 1.2 m/s/s.
- 2. Calculate the normal force in each diagram.

- 3. For each of the diagrams in #2, calculate the frictional force if $\mu_k = 0.27$
- 4. A rock slides from rest down a 13.5 m long ramp into a pool of water. If the ramp is inclined at an angle of 55° above the horizontal and the coefficient of kinetic friction between the rock and the ramp is 0.35, how long does it take the rock to hit the water?
- 5. Find the acceleration of the mass if $\mu_k = 0.10$

iii)

6. For each of the following diagrams calculate:

ii)

- a) acceleration of the system
- b) tension in the rope.

a)

angled side is frictionless flat top $\mu_k = 0.20$

Answers:

1 a	245 N	3c	10.9 N
1 b	275 N	4	t = 2.04 s
1 c	215 N	5	
2a	349 N	6 (i)	$a = 5.35 \text{ m.s}^2$, $T = 13.4 \text{ N}$
2b	16.5 N	6 (ii)	$a = 2.19 \text{ m.s}^2$, T = 91.3 N
2c	40.3 N	6 (iii)	$a = 5.03 m.s^2$, T = 11.9 N
3a	94.2 N	6 (iv)	$a = 1.64 \text{ m.s}^2$, T = 28.8 N
3b	4.46 N		

- 1. Calculate the centripetal acceleration of a car travelling at 85 km/hr around a circular track of radius 0.900 km.
- 2. What centripetal force is exerted on a 2.5 kg mass spinning in a circle of radius 1.5 m at 12.0 m/s?
- 3. A 5.0 kg mass is attached to a wire cable spinning in a vertical circle of radius 1.2 m. If the mass is spinning at 75 km/hr; calculate:
 - a) max tension
 - b) min tension
- 4. The end of a lawnmower blade rotates with a frequency of 75 Hz.
 - a) What is the centripetal acceleration if the blade is 32 cm long?
 - b) How fast is the tip of the blade moving?
- 5. A plane flying at 475 km/hr flies over the top of a circular path.
 - a) What must be the radius of the circle to just achieve weightlessness? (Normal force = 0)
 - b) What would be the normal force on a 75 kg pilot in the same plane if it flies the bottom of the circular path at the same speed?
- 6. A roller coaster ride makes a loop-the-loop as seen below. If the radius of the coaster is 22.0 m,
 - a) How fast must the coaster be going so that the people don't fall out?
 - b) At the bottom of the coaster, what is the normal force on a 75 kg person if the speed is 85 km/hr?

- 7. A car drives around a horizontal curve with a frictional coefficient of 0.58. What is the maximum safe speed for the car if the radius of the turn is 125 m?
- 8. A 2.5 g raisin is sitting on a turntable of radius 12 cm. If the turntable rotates at a frequency of 77 RPM, what frictional force is required to keep the raison on the turntable?
- 9. A car is traveling at 120 km/hr around a frictionless turn of radius 115 m. What must be the angle of the bank to keep the car on the road?
- 10. A frictionless turn is banked at 35° to the horizontal. What is the maximum speed at which the car can stay on this road if the radius is 225m?

1	$0.619 \ m/s^2$	6a	14.7 m/s
2	240 N	6b	2636 N
3a	1852 N	7	26.7 m/s
3b	1754 N	8	0.0195 n
4a	71 061 m/s ²	9	45°
4b	151 m/s	10	39.3 m/s
5a	1776 m		
5b	1470 N		

- 1. A lever arm 2.5 m long has a force of 175 N applied to it right angles. What is the torque generated?
- 2. What are the conditions for translational equilibrium?
- 3. What are the conditions for static equilibrium?
- 4. What is the tension in each of the strings below? The beam in part C is massless.

5. What must be the tension in each string if the mass M = 12 kg?

6. Calculate the torque generated about the bolt in each wrench below.

a)

7. Calculate the total torque generated about the lug nut in the problem below.

- 8. Kahlil (m = 125 kg) and Ghibran (m = 75 kg) are sitting on a 4.0 m long massless seesaw. If Ghibran sits on the end of the seesaw, how far from the pivot must Kahlil sit to balance him?
- 9. What mass must be placed on the seesaw to balance the 55 kg mass?

10. The 12.0 m long I-Beam (m = 650 kg) in the diagram is secured as a cantilever beam. A construction worker (m₁ = 75 kg) is sitting on the beam as indicated, with his gear hanging over the side (m₂ = 275 kg). What is the force in each support?

11. The wheelbarrow shown is carrying a mass of 75 kg. The centre of mass is located 55 cm behind the front wheel. What must be the force exerted by the man on the handle at a distance of 1.75 m behind the front wheel?

12. A truck of mass 1200 kg is at rest on a uniform bridge of mass 1700 kg. The bridge is 75 m in length. If the truck is 15 m from support "A", what is the force in each support?

13. The crane derrick below has a mass of 125 kg and an overall length of 5.5 m. M = 2500 kga) What is the Tension T, in the cable?

14. A duck holds a hanging window in static equilibrium with a horizontal force of 125 N. If the window is 95 cm long, what is the mass of the window?

- 15. A 5.0 m long ladder with a mass of 22 kg is leaning against a frictionless wall at a point 4.0 m above the floor. A boy of mass 42 kg is standing 4.0 m from the bottom of the ladder.
 - a) What must be the force of the wall on the ladder?
 - b) What must be the force of friction on the ladder?
 - c) What must be the force of the floor on the ladder?

1	437.5 N	9	19.2 kg
2	$F_{\text{NET}} = 0$	10	$F_a = 16 170 \text{ N [down]}$ $F_B = 25 970 \text{ N [up]}$
3	$\begin{array}{l} F_{\text{NET}}=0\\ T_{\text{net}}=0 \end{array}$	11	231 N [up]
4a	29.4 N	12	$F_a = 17 738 N$ $F_b = 10682 N$
4b	231 N 115 N	13a	T = 18331 N
4c	102 N		
5	$T_1 = 78.3 N$ $T_2 = 110 N$	13c	$F_y = 10 \ 975 \ N \ [down]$
6a	8.25 N	14	m = 20 kg
6b	7.47 N	15a	$F_w = 580 N$
7	102 N·m	15b	$F_{Fr} = 580 N$
8	1.20 m	15c	$F_{N} = 627 N$