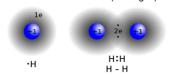
MOLECULAR SUBSTANCES: -> non- ne tals

- are solids, liquids or gases at SATP
- if soluble, dissolve in water to forncolorlessaqueous solutions thatlo not conduct electricity ie. they are non-electrolytes
- they contain onlynonmetal atoms

Molecula

a particle of a molecular substance that contains a fixed number of covalently-bonded nonmetal atoms


Covalent Bond:

formed from the sharing of valence electrons between nonmetal atoms, which results in an electron structure that is the same as a noble gas, for each atom in the molecule

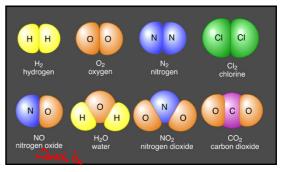
Example:

H₂ A molecule of hydrogen gas has 2 atoms of Hydrogen, each with one electron. When they bond they share a pair of electrons (one pair

covalent bond). Since each atom now has 2 electrons, they both have same electron structure as He (noble gas).

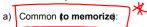
NOTE: molecules DO NOT form ions.
http://www.youtube.com/watch?v=lwpDicW_MQQ&feature=related
http://www.youtube.com/watch?v=LRVW0tgSLR1&feature=endscreen&NR=1
&safety_mode=true&persist_safety_mode=1&safe=active
http://www.youtube.com/user/greatpacificmedia#p/u/55/UR4eG60jjQQ
http://www.youtube.com/user/greatpacificmedia#p/u/55/UR4eG60jjQQ

Sep 13-1:37 PM


Dec 8-7:35 PM

Molecular Substances Include Molecular Elements and Molecular Compounds

Molecular elements: contain only one kind of nonmetal atom


Type	Molecular Elements	
Monatomic one atom	Noble gases : He(g) Ne(g) Ar(g) Kr(g) Xe(g) Rn(g)	
Diatomic two atoms/molecule	Hydrogen, Oxygen, Nitrogen and the Halogens The "HONorable Halogens" H ₂ (g), O ₂ (g), N ₂ (g), F ₂ (g), Cl ₂ (g), Br ₃ (g), I ₂ (s), At ₂ (s)	
Polyatomic more than 2 atoms/molecule	Ozone = O ₅ (g) Phosphorus = R(s) Sulfur (Sulphur) = R(s)	

Molecular elements and Molecular compounds

Sep 13-1:39 PM Dec 8-7:30 PM

Molecular Compounds

 $CH_{4(g)}$ = methane $CH_8OH_{(1)}$ = methanol $H_2O_{(I)}$ = water

 $C_3H_{8(g)}$ = propane $C_2H_5OH_{(1)}$ = ethanol $H_2O_{2(1)}$ = hydrogen peroxide

 $NH_{3(g)}$ = ammonia $C_6H_{12}O_{6(s)}$ = glucose $C_{12}H_{22}O_{11(s)}$ = sucrose

- b) Binary Molecular Compounds
- composed of 2 different kinds of nonmetalseg. CO CO₂ CCl₄ SO₃

Writing Molecular Formulas

- General Rules

 1. Write each atom symbol.
- 2. Each prefix indicates the subscript for the nonmetal atom that precedes it (# of atoms present).

 3. If no prefix is present, then there is only one atom of that nonmetal
- present. Monoxide = one oxygen atom present.

 Examples: Fill-in the table by writing the molecular formulas

Name	Formula	Name	Formula
Carbon monoxide		Trisulfur hexaoxide	
Carbon tetrachloride		Dinitrogen pentaoxide	
phosphorus pentachloride		disulfur tetraoxide	
tetraphosphorus decaoxide		tetraphosphorus octaoxide	

Sep 13-1:41 PM

Sep 13-1:42 PM

Note:

 $I_{2(s)}$ $At_{2(s)}$

Formulas for common molecular substances must be memorized, as well as those for the "HONorable Halogens": $H_{2(g)}$ $O_{2(g)}$ $N_{2(g)}$ $F_{2(g)}$ $CI_{2(g)}$ $Br_{2(l)}$

Naming Molecular Substances

General Rules

- 1. First element is named in full.
- 2. Second element name is shortened and given aide ending.
- 3. Use prefixes (same as for hydrates) to indicate the number of each kind
- 4. The prefixmono is usually only used for the second element. Ex CO = carbon monoxide.
- Certain Hydrogen compounds (those with H first in the formula) do not prefixes. Ex. $H_2S_{(g)}$ = hydrogen sulfide, **not** dihydrogen sulfide

Dec 8-7:53 PM Sep 13-1:42 PM

Formula	Name	Formul a	Name
N ₂ O(g)		H ₂ O	
SO ₃ (g)		H ₂ S	
P ₄ O ₆ (s)		NH ₃	
N ₃ O ₇		H ₂ O ₂	

Dec 8-7:58 PM May 20-3:40 AM