The Law of Conservation of Energy

- 1. Energy cannot be created or destroyed, but only transferred from one form to another without any loss.
- 2. The energy of any closed system always remains the same.

^{*}These are just different ways of saying the same thing!

Mechanical EnergyThe sum of kinetic and potential energies.

Mathematically:
$$E_T = E_g + E_K$$

Where: F_4 = Mechanical Energy (J)

 E_g = Gravitational Potential Energy (J)

 $E_K = Kinetic Energy (J)$

How does the law of conservation apply to Mechanical energy?

Since energy cannot be created or destroyed the mechanical energy of a system n remain constant.

For example, throwing a ball into the air.

Ex 1: (Roller Coaster)

The roller coaster shown below has an initial velocity of 12.2 m/s and is at a height of 20 m above the ground. The combined mass of the cart and riders is 250 kg.

- a) What is the total mechanical energy of the system?
- b) How fast is the cart going at point B?
- c) How high up slope C will it go before it stops?

Ex 2: (Pendulum)

If a pendulum with a mass of 1.2 kg can reach a maximum height of 0.2 m, find it maximum velocity

A 5.0g ping pong ball is dropped from a height of 2.0m. The ball loses 20% of its energy when it bounces. How high will it rise after the first bounce?

A child loses 15% of her energy as she comes down a slide that is 3.0m high. How fast is she going at the bottom?

October 16, 2013

An object loses 17% of its energy as it falls from a window 5.7m above the ground. What is its impact velocity?

Read p. 342 - 344

p. 348 #1

p. 374 #89, 90, 91, 92

13