Power

Power is the rate at which work is done.

Mathematically,
$$P = \underline{W}$$

 Δt

Where:
$$P = Power (in watts, W)$$

 $W = Work (J)$
 $\Delta t = time (s)$

For example, a 60 W lightbulb uses 60 Joules of energy every second that it is on.

$$60 \text{ W} = 60 \text{ J/s}$$

- Ex 1: A 55 kg child runs up a flight of stairs, moving a vertical displacement of 12 m in 5.0 minutes. The same 55 kg child then takes an elevator up the same 12 m, this time taking 11 seconds.
- a) Find the work done in each case.
- b) Find the power generated in each case.

Ex 2: Running the stairs.

Ex 3: How much energy is consumed by a 1500 W hairdryer that runs for 15 minutes?

October 16, 2013

Ex 4: A man exerts a force of 150N to push a couch a distance of 2.0 m in 3.5s. How much power did he generate?

When lifting at a constant speed:

Ex 5: A crane lifts a 1200 kg load at a constant speed of 4.3 m/s. How much power is delivered?

read p. 331 - 332 p. 370 #41-45