When a problem contains more than one mass in contact with each other it is called a Multi-Mass problem.

Ex: A student has three ducks tied together with string on a frictionless surface. He exerts a force of 10.0 N [Right] as shown below. Find:

a) the acceleration of the system

Atwood's Machine

Atwood's original illustrations show the main pulley's axle resting on the rims of another four wheels, to minimize friction forces from the <u>bearings</u>. Many historical implementations of the machine follow this design.

An elevator with a counterbalance approximates an ideal Atwood machine and thereby relieves the driving motor from the load of holding the elevator cab — it has to overcome only weight difference and inertia of the two masses.

An ideal Atwoods Machine has a frictionless pulley and a string that does not stretch. Both masses move with uniform acceleration.

Find the acceleration and the tension when m1 = 7.0kg and m2 = 4.0kg.

Find the acceleration and the tension.

Find the acceleration and the tension when m1 = 5.5kg and m2 = 2.7kg.

Find the acceleration and the tension.

a)No Friction $b)u_k = 0.1$

Find the acceleration and the tension when: a) there is no friction $b)u_k = 0.12$

Find the acceleration and the tension in the string.

PRACTICE...

Text page 202 1 (a) with and without friction page 225 #11 (a) & (b) with and without friction page 225 #12 & 13