Resistance in Series and Parallel

Resistance in series:

In series by KVL,

$$V_T = V_1 + V_2$$

From Ohm's Law $V_T = I_T R_T$

$$I_T R_T = I_1 R_1 + I_2 R_2$$

But in series $I_T = I_1 = I_2 = I_3$

So this cancels to

$$\mathbf{R}_{\mathrm{T}} = \mathbf{R}_1 + \mathbf{R}_2 + \mathbf{R}_3$$

Resistors in series add up algebraically.

Draw the equivalent circuit.

Original Circuit...

Equivalent Circuit...

Resistance in parallel:

In parallel by KCL,

$$I_T = I_1 + I_2 + I_3$$

From Ohm's Law $V_T = I_T R_T$

$$\frac{\underline{V}_T}{R_T} = \frac{\underline{V}_1}{R_1} + \frac{\underline{V}_2}{R_2}$$

But in parallel $V_T = V_1 = V_2$

So this cancels to

$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2}$$

Resistors in parallel are weird!

Draw the equivalent circuit.

Original Circuit...

