Compton Effect: (Momentum and Photons)

Light, as a wave, should not have momentum, since momentum requires p = mv.

However, Compton's work showed that photons collide and exchange energy with particles according to the law of conservation of energy, that they possess momentum that this is conserved during a collision.

```
http://www.youtube.com/watch?
v=Q_h4IoPJXZw&safety_mode=true&persist_safety_mode=1&safe=active

http://www.youtube.com/watch?v=_riIY-
v2Ym8&safety_mode=true&persist_safety_mode=1&safe=active
```


Compton used Einstein's ideas to explain.

Conservation of Energy

Conservation of Momentum

$$\overrightarrow{p}_{x-ray} = \overrightarrow{p}_{scattered\ photon} + \overrightarrow{p}_{electron}$$

How do we calculate the momentum of a photon?

Einstein used E= mê

- **low f photons small momentum act like waves
- **high f photons larger momentum act like particles

•

$$p = h / \lambda$$

Where: $m = E / c^2$ is known as the **mass equivalence**

Ex.1 What is the frequency of photons that have a momentum of 2.80 $x^21\log x$ m/s?

Ex.2 An 85 eV photon collides with an electron. The resultant photon is deflected 60 from the original line of travel and has a wavelength of 214 nm.

- (a) What is the momentum of the original photon?(b) What is the momentum of the resultant photon?
- (c) How much energy was given to the electron?(d) How much has the electrons speed increased?