Factors affecting Magnetic Field Strength around a straight conductor

The magnetic field around a straight conductor will be determined by:

- (i) current (I)
- (ii) magnetic permeability (μ)
- (iii) perpendicular distance away from wire (r)

Mathematically this is called Biot's Law

B: Magnetic field Strength in Tesla (Tyπ x/0 7 Τ· 6 π μ: magnetic permeability (T·m/A)

I: current in Amperes (A)

r: perpendicular distance away from straight conductor in meters (m)

If you read 643-644 do not despair, we are only dealing with the simplified version of Biot Law as found on the bottom of 644, and only for straight conductors.

Assign read 639 - 641 do p. 663 #17, 18, 22 Assign Homework Set #10 Biot's Law

P.663
$$T = 17.5A$$

P.411 $B = 3.1 \times 10^{-5}T$
 $Y = 7$
 $A = 10^{-5}T$
 $A = 10^{-7}$
 $A = 10^{-7}$

18.
$$r = 12m$$
 $I = 4.5 \times 10^{3} A$
 $B = ?$
 $B = MI$
 $ATTH$
 $B = (470^{-7})(4.5 \times 10^{3})$
 $AT(1a)$
 $B = 0.000075T$

What is B at the midpoint between the wires?

(a) same size B same dir.I

Find the mag. field strength at the mid-point.

(1.0×10-571L)